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The evolution in the constructional "eld and the realization of ever more slender and light
structures have emphasized the increasing di$culty of properly evaluating the actions and
e!ects of wind on poles and monotubular towers. Faced with this situation the Italian
constructors, united in a consortium coordinated by ACS ACAI Servizi, entrusted the Depart-
ment of Structural and Geotechnical Engineering of Genova University with the task of
formulating an ad hoc calculation procedure for this type of structure. This gave rise to
a wide-ranging research project in which theoretical models, experimental evaluations and
engineering methods were developed in parallel through an e!ective and quite a unique co-
operation between researchers, designers and builders. This paper illustrates the physical
aspects, the general principles and the basic formulation of the method proposed, with special
emphasis on gust bu!eting and aeroelastic phenomena. Preliminary results of full-scale
measurements of the structural damping are also presented. The conclusions highlight the
scienti"c and technical perspectives of this research. ( 1999 Academic Press
1. INTRODUCTION

POLES AND MONOTUBULAR towers are generally used for lighting and telecommunication
purposes. Their unit costs are limited. Their design may appear as a modest problem. The
static scheme, a cantilever beam with one or more concentrated masses, is probably the
simplest in the structural "eld. They are never excessively high.

A deeper examination of these constructions reveals completely di!erent situations. They
are built in such large numbers to represent a relevant economic problem (Figure 1). Under
wind action they are subjected to dynamic e!ects which are seldom so complex. Indepen-
dent of height, they are more slender than any other structure. The coupling of the
structural slenderness with concentrated masses, especially that at the top (Figure 2), makes
the problem fully aeroelastic, giving rise to potentially unstable conditions.

The consequences in the codi"cation sector are evident. Speci"c standards exist (¸ighting
Columns 1985; Public ¸ight Poles 1985; Structural Standards 1991) based on empirical
calculation criteria de"nitely emanating from actual physical phenomena. The use of old
codes, developed by considering other kinds of structures, is unjusti"ed in this sector. The
Eurocode on wind actions and e!ects on structures (Basis 1994) as well as other standards
of the new generation (Minimum Design ¸oads 1995; ¹echnical Standards 1996; AIJ Recom-
mendations 1996) cannot be applied to these constructions. The frequent abnormal vibra-
tions as well as some failures of poles and monotubular towers repeatedly con"rmed the
necessity of understanding better their wind-excited behaviour.

In an attempt to deal with this situation the ACAI (Italian Steel Constructor Association)
Associates of the Poles and Monotubular Towers Section entrusted the Department of
0889}9746/99/100877#29 $30.00 ( 1999 Academic Press



Figure 1. Array of light poles.
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Structural and Geotechnical Engineering of Genova University with the task of formulating
an ad hoc calculation procedure for evaluating the actions and the e!ects of wind on this
structural type. This gave rise to a wide-ranging research project where theoretical models,
experimental evaluations and engineering methods were developed in parallel through an
e!ective and quite a unique co-operation between researchers, designers and builders
(Solari & Pagnini 1998; Pagnini et al. 1999).

This paper illustrates the theoretical basis and the analytical development of the method
proposed for calculating gust bu!eting and galloping e!ects. Starting from a general
formulation involving burdensome numerical evaluations, suitable engineering simpli"ca-
tions are discussed and applied, leading to a solution of the problem in closed form. The
solution is inspired by the procedure established by Piccardo & Solari (1998b,c) for
determining the three-dimensional response of slender structures, generalizing it to the
presence of localized masses and aeroelastic terms. Some results of full-scale measurements
of the structural damping are also presented, highlighting the central role of this parameter.
Preliminary analyses concerning the vortex shedding are discussed in another paper
(Solari & Pagnini 1998).

2. WIND FIELD

Let x, y, z be a Cartesian reference system with origin at O on the ground; z is vertical and
directed upwards. The wind "eld along z-axis is represented by the temporal law of the
instantaneous u vectorial velocity (Figure 3):

u(z ; t)"u6 (z)#u@ (z ; t), (1)

in which t is the time, u6 is the mean wind velocity, and u@ is the turbulent #uctuation of
u around u6 . Considering #at homogeneous terrains, near-neutral atmospheric conditions
and the internal boundary layer, we can write

u6 (z)"iuN (z), u@(z ; t)"iu@
x
(z ; t)#ju@

y
(z ; t)#ku@

z
(z ; t), (2)



Figure 2. Monotubular light tower.

POLES AND MONOTUBULAR TOWERS 879
where i, j, k are the unit vectors associated with x, y, z; uN is the mean wind velocity aligned
with x; u@

x
, u@

y
, u@

z
are the longitudinal, lateral and vertical turbulence components. As is usual

in the study of vertical structures, u@
z

is ignored.
The mean wind velocity pro"le is classically expressed by the logarithmic law (Simiu

1973)

uN (z)"2)5u
*
ln(z/z

r
) for z*z

m
, uN (z)"uN (z

m
) for z(z

m
, (3)

where u
*

is the shear velocity, z
r
is the roughness length and z

m
is the value of z below which

uN is taken as constant to be on the safe side.
The atmospheric turbulence is a stationary Gaussian random process. It is assumed that

turbulent #uctuations are small with respect to the mean wind velocity [u@
x
/uN ;1, u@

y
/uN ;1

(Davenport 1961)] and that u@
x

and u@
y

are not correlated (Characteristics of Atmospheric
¹urbulence 1993). Their cross-power spectral density functions (c.p.s.d.f.) are given by

S
ubub

(z, z@; n)"JS
ub
(z ; n) S

ub
(z@; n) Coh

ubub
(z, z@; n), (b"x, y), (4)



Figure 3. Wind "eld.
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in which n is the frequency; S
ub

and Coh
ubub

are the power spectral density function (p.s.d.f.)
and the coherence function of u@b, respectively. Using the model developed by Solari
& Piccardo (1999),

nS
ub
(z; n)

p2
ub

"

jbn¸b(z)/uN (z)
[1#1)5jbn¸b (z)/uN (z)]5@3

, Coh
ubub

(z, z@; n)"expG!
2nC

zb Dz!z@D
uN (z)#u6 (z@) H , (5)

where j
x
"6)868, j

y
"9)434; p

ub
"IbuN is the root-mean-square (r.m.s.) value of u@b , assumed

to be independent of height, Ib is the u@b turbulence intensity, ¸b is the integral length scale of
u@b in the x direction, and C

zb is the exponential decay coe$cient of u@b along z. Suitable
models of I

x
, ¸

x
, C

zx
are given by Solari (1987) and generalized to I

y
, ¸

y
, C

zy
by Solari

& Piccardo (1999).

3. AERODYNAMIC ACTIONS

Consider the pole or the monotubular tower schematized in Figure 4. The shaft is modelled
by a slender cantilever beam whose vertical axis coincides with z; its cross-section has
tubular circular or polygonal shape; let h be the height of the shaft above ground; h

b
is the

depth of the extrados of the foundation. N localized masses are applied to the shaft* the
equipment at the summit (Figure 2), the instrument or rest platforms (Figure 5)* in nodal
points k (k"1, 2,2,N) at height z

k
.

The structure undergoes aerodynamic actions partly distributed along the axis of the
shaft and partly concentrated in the geometrical centre of the masses assumed as coincident
with the z-axis.



Figure 4. Structural model.
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Aerodynamic actions along the shaft can be resolved into alongwind and crosswind
forces F

0x
, F

0y
, and torsional moments M

0z
around z. Ignoring M

0z
due to shaft slender-

ness and torsional sti!ness, F
0x

, F
0y

are given by

F
0a (z ; t)"FM

0a (z)#F@
0a(z ; t), (a"x, y), (6)

FM
0a being the mean value of F

0a ; F@
0a the #uctuation of F

0a around FM
0a . Neglecting the

contribution of vortex shedding, quasi-steady theory provides (Piccardo & Solari 1996)

FM
0a (z)"1

2
ouN 2 (z)bc

0axcax(z), F@
0a(z ; t)"1

2
ouN (z)b +

b
c
0abcab (z)Nbu@b (z ; t), (7)

in which o is the air density, b the reference size of the section, &b the sum of two terms with
indices b"x, y denoting the contributions of u@

x
, u@

y
, respectively; N

x
"2, N

y
"1; c

0ab are
the a, b elements of the matrix [c

0
], given by

[c
0
]"C

c
0xx

c
0xy

c
0yx

c
0yy
D"C

c
0d

c@
0d
!c

0l
c
0l

c
0d
#c@

0l
D , (8)

c
0d

, c
0l

being the drag and lift coe$cients of the shaft; c@
0d

, c@
0l

are the prime angular
derivatives of c

0d
, c

0l
; cab is a nondimensional function by which aerodynamic properties

and cross-sections varying with z are taken into account; it is called shape function and is
assumed as nonnegative.

The role of vortex shedding needs further discussion. Denoting the Strouhal number by
St, the shaft-shedding frequency is n

s
"uN St/b. Since b is usually small, n

s
is su$ciently high

to justify the use of the quasi-steady theory (Kawai 1983; Holscher & Niemann 1996)



Figure 5. Monotubular tower with platforms.
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especially at high design wind velocities. Moreover, it happens that the critical velocity uN
cr
,

i.e., the mean wind velocity which makes the vortex shedding resonant with the funda-
mental structural frequency, is so small as to make the quasi-static response to the wake
excitation quite negligible. Critical resonant e!ects are singular conditions dealt with by
Solari & Pagnini (1998).

Aerodynamic actions on the kth mass are represented by a force F
k

and a moment
M

k
with Cartesian components F

kx
, F

ky
, F

kz
and M

kx
, M

ky
, M

kz
. Ignoring the vertical force

F
kz

, the bending moments M
kx

, M
ky

which are small if masses are small and compact, and
the torsional moment M

kz
which is not in#uential due to shaft torsional sti!ness, F

kx
and

F
ky

are given by

F
ka(t)"FM

ka#F@
ka(t), (k"1, 2,2,N), (9)

FM
ka being the mean value of F

ka , F@
ka is the #uctuation of F

ka around FM
ka .

Neglecting the contribution of vortex shedding, usually irregular and with limited e!ects
of compact isolated blu! bodies and high Reynolds numbers (Buresti 1998), FM

ka , F@
ka are

given by

FM
ka"1

2
ouN 2(z

k
)A

k
c
kax , F@

ka (t)"1
2
ouN (z

k
)A

k
+
b

c
kabNb u@b (zk ; t), (10)
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where A
k

is the reference size of the kth mass; c
kab are the a, b elements of the matrix

[c
k
]"C

c
kxx

c
kxy

c
kyx

c
kyy
D"C

c
kd

c@
kd
!c

kl
c
kl

c
kd
#c@

kl
D (11)

in which c
kd

, c
kl

are the drag and lift coe$cients of the kth mass; c@
kd
, c@

kl
are the "rst angular

derivatives of c
kd

, c
kl
.

Combining the aerodynamic actions distributed along the shaft [equation (6)] with those
applied in the localized masses [equation (9)] the global forces become

Fa(z; t)"FM a(z)#F@a (z ; t), (12)

FM a (z)"1
2
ouN 2 (z)bCax (z), F@a(z ; t)"1

2
ouN 2 (z)b +

b
Cab (z)Nbu@b (z ; t), (13)

Cab(z)"c
0abcab(z)#

1

b

N
+
k/1

A
k
c
kab d(z!z

k
), (14)

where d ( ) is the Dirac delta function, Cab is a generalized shape function by which the
composite construction dealt with in this paper can formally be treated coherently with the
wind loading model proposed by Piccardo & Solari (1996) for slender structures. Since
F
x
, F

y
are linear combinations of u@

x
, u@

y
, F

x
, F

y
are also stationary Gaussian random

processes as are u@
x
, u@

y
. We refer to this scheme as the "rst level approximation. It can be

simpli"ed by analyzing the trend of the aerodynamic coe$cients of the shaft and of the
masses.

Figure 6 shows the coe$cients c
0d

, c
0l

of a hexagonal element with in"nite length on
varying the wind direction (Hallam et al. 1978). There is a regular progression of c

0d
, while

c
0l

is extremely variable. Increasing the number of sides of the polygon (poles and
monotubular towers rarely have sections with less than six sides) c

0d
is more and more

regular (Mean Fluid Forces 1980) while c
0l

tends to zero. In the limit case of circular section
c
0d

is constant and c
0l
"0; then c@

0d
"c@

0l
"0. Taking also into account the fact that poles

and monotubular towers usually adopt rounded corners (Figure 7), it seems reasonable to
assume, for engineering purposes, c

0l
"c@

0d
"0 independently of the shape of the polygon;

c@
0l
"0 is acceptable only for regular polygons with more than eight sides (Cook 1990).
The situation is more complicated for localized masses which exhibit a wide range of

complex shapes. However, since most of these are tendentially polar-symmetric (Figures
2 and 8), in this case also c

kl
"c@

kd
"0 (k"1, 2,2, N) is a reasonable engineering schemati-

zation. The further position c@
kl
"0 (k"1, 2,2, N) may be applied with the exception of

sharp edges (Figure 9).
Taking also into account the fact that codes often provide drag and prime derivatives of

lift coe$cients, while not furnishing any value of lift and prime derivatives of drag
coe$cients, we refer to c

kxy
"c

kyx
"0 (k"0, 1,2,N) as the second level engineering

approximation. Based on this simpli"cation the mean crosswind force [equation (13a)] is
null, while F@

x
, F@

y
[equation (13b)] are proportional solely to u@

x
, u@

y
, respectively,

FM
y
(z)"0, F@a (z ; t)"1

2
ouN (z)bCaa(z)Nau@a(z ; t). (15)

4. EQUATIONS OF MOTION AND GALLOPING CONDITIONS

Assume that the structure has a linear viscoelastic behaviour and possesses two symmetry
planes intersecting along the z-axis. The line of the torsional centres coincides with z and the
structure admits two sets of orthogonal modes t

xi
, t

yi
(i"1, 2,2) belonging to planes xz,



Figure 6. (a) Drag and (b) lift coe$cients of a hexagonal element with in"nite length [from Hallam et al. (1978)].

Figure 7. Cross-section of an octagonal pole.
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yz, respectively. Indicating the alongwind and crosswind displacements by a"x, y, they are
given by

a (z; t)"
ra
+
i/1

tai(z) pai (t), pai (t)"pN ai#p@ai (t), (a"x, y), (16)

in which ra is the number of modes used to reproduce the a response, pai is the principal
coordinate associated with tai , pN ai is the mean value of pai and p@ai is the #uctuation of



Figure 8. Typical light equipment with tendential polar symmetry.

Figure 9. Special light equipment with sharp edges.

POLES AND MONOTUBULAR TOWERS 885
pai around pN ai :

pN ai"
1

(2nnai)2 P
h

0

FM a(z) tai (z) dz (i"1, 2,2, ra ; a"x, y), (17)

P
h

~hb

k (z)tai (z)taj(z) dz"d
ij
, k (z)"m (z)#

N
+
k/1

M
k
d (z!z

k
), (18)

nai is the ith natural frequency in plane az, FM a(z) the mean force [equation (13a)], k the
generalized mass, m the mass of the shaft per unit length, M

k
the kth mass, and d

ij
is
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Kronecker's delta. Assuming that the structural damping is proportional (Caughey 1960),

p( @ai (t)#2m
sai(2nnai) pR @ai (t)#(2nnai)2 p@ai (t)"P

h

0

[F@a (z ; t)#U@a(z ; t)] tai (z) dz, (19)

where m
sai is the ith structural damping coe$cient, F@a the #uctuating aerodynamic force

equation (13b), and U@a the aeroelastic force due to structural motion; using the quasi-steady
linearized theory [see for instance Solari (1994)], we have

U@a(z ; t)"!1
2

ouN (z) b +
b

Cab(z)Nb bQ (z ; t), (20)

+b being the sum of two terms with indices b"x, y, denoting the contributions of x, y,
respectively. The formal analogy between equations (20) and (13b) is apparent. Substituting
equation (20) into equation (19) gives

p( @
xi

(t)#2m
sxi

(2nn
xi
) pR @

xi
(t)#(2nn

xi
)2p@

xi
(t)"P

h

0

F@
x
(z; t)t

xi
(z) dz

!P
h

0

ouN (z)bC
xx

(z) C
rx
+
h/1

t
xh

(z) pR @
xh

(t)Dt
xi

(z) dz

!P
h

0

1
2
ouN (z) bC

xy
(z) C

ry
+
l/1

t
yl
(z) pR @

xl
(t)D t

xi
(z) dz (i"1, 2,2, r

x
), (21)

p( @
yj

(t)#2m
syj

(2nn
yj
) pR @

yj
(t)#(2nn

yj
)2p@

yj
(t)"P

h

0

F@
y
(z; t)t

yj
(z) dz

!P
h

0

1
2
ouN (z)bC

yy
(z) C

ry
+
l/1

t
yl
(z) pR @

yl
(t)Dt

yj
(z) dz

!P
h

0

ouN (z) bC
yx

(z) C
rx
+
h/1

t
xh

(z) pR @
xh

(t)D t
yj

(z) dz ( j"1, 2,2, r
y
) (22)

which is a set of (r
x
#r

y
) equations where aeroelastic terms have the role of coupling both

x, y components of motion [through the third addenda on the right-hand sides of equations
(21) and (22)] and di!erent modes in the same plane (through the second addenda on the
right-hand sides). This means that, due to aeroelasticity, the structural system becomes
nonproportional (Hurty & Rubinstein 1964) and potentially unstable (Meirovitch 1980).
Furthermore, the coupling of the t

xi
and t

yj
modes for which n

xi
"n

yj
can give rise to

unstable regimes of the bimodal galloping type (Jones 1992). This is quite relevant, since
usually n

xi
"n

yi
for all principal i coordinates.

In addition to aerodynamic actions, the equations of motion are simpli"ed by assuming
c
kxy

"c
kyx

"0 (k"0, 1,2, N). In this case U@
x
, U@

y
are proportional to xR , yR [equation

(20)], respectively:

U@a (z ; t)"!1
2

ouN (z) bCaa(z) NaaR (z ; t). (23)

It follows that the third addenda on the right-hand sides of equations (21) and (22) vanish
and the x, y components of motion become uncoupled. Nevertheless, the system retains its
original coupling between di!erent modes in the same plane which means that the initial set
of (r

x
#r

y
) equations reduces to two sets of r

x
, r

y
equations. They are de"nitely uncoupled

under the condition

P
h

0

uN (z) Caa (z)tai (z)taj(z) dz"0 for iOj. (24)
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The literature usually regards equation (24) as an acceptable approximation if aerody-
namic coe$cients are positive (Damping 1991). The presence of negative aerodynamic
coe$cients does not prevent its use since the coupling of di!erent modes at di!erent
frequencies excludes bimodal galloping (Piccardo & Luongo 1995). It follows that equa-
tions (21) and (22) become

p( @ai (t)#2mai(2nnai) pR @ai (t)#(2nnai)2 p@ai (t)"P
h

0

F@a(z ; t) tai (z) dz, (25)

in which

mai"m
sai#m

aai , (26)

m
aai"

NaobhuN (z
0
)t2ai (h)

8nnai

N
+
k/0

c
kaaKA

kai , (27)

KA
0ai"

:h
0

D (z)caa (z)t2ai (z) dz

ht2ai(h)
, KA

kai"
D (z

k
) A

k
t2ai (zk)

bht2ai (h)
, (k"1, 2,2, N), (28)

mai and m
aai are the ith total damping and the ith aerodynamic damping coe$cients,

respectively, D (z)"uN (z)/uN (z
0
), z

0
"0)6h is the reference height of the shaft (Solari 1982), and

KA
kai (k"0, 1,2,N) are nondimensional nonnegative coe$cients.
Since c

kxx
'0, the alongwind aerodynamic damping is always positive. It is greater, the

more light and #exible the structure is, increases with the mean wind velocity, depends on
the vibration mode through the frequency and the eigenfunction value at localized mass
levels.

The presence of one localized mass (N"1) at the top of the shaft is the most representa-
tive case (see Figure 15). The low fundamental frequency n

x1
and the great t

x1
(z

1
) value

cause large aerodynamic energy dissipation. Therefore, in the "rst mode, the mass behaves
as a damper. In higher modes the increase of n

xi
and the tendency of t

xi
(z

1
) to become

almost null reduce the aerodynamic damping to the point of making it quite negligible.
The situation changes in the crosswind direction where c

kyy
can be negative. Classical

galloping instability occurs when the total damping m
yi

is null or negative, which means
[equation (26)]

m
ayi

4!m
syi

(i"1, 2,
2

, r
y
). (29)

Since m
syi
'0, equation (29) may hold if a principal coordinate exists such that

N
+
k/0

c
kyy

KA
kyi

(0. (30)

Equation (30) generalizes the classical Den Hartog (1932) necessary condition to this
structural type. Since equation (30) is satis"ed, and substituting equation (27) into (29), it is
found that galloping occurs in the ith mode in plane az when the mean wind velocity at
height z

0
takes the following values:

uN (z
0
)5uN

gi
"!

8nn
yi
m
syi

obht2
yi
(h)

1

+N
k/0

c
kyy

KA
kyi

. (31)

If the aerodynamic coe$cients depend on the mean wind velocity through the Reynolds
number, equation (31) implies an iterative solution. The minimum positive value of
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uN
gi

identi"es the wind "eld producing the galloping. The case of a shaft with one mass at the
top is again very meaningful.

(a) For c
0yy

'0, c
1yy

'0, the system is asymptotically stable and the crosswind aerody-
namic damping increases like the alongwind aerodynamic damping (although usually of
a lesser magnitude).

(b) For c
0yy

(0, c
1yy

'0, the system can gallop only if equation (30) holds. In "rst mode,
where t

y1
(z

1
) is large, the mass produces a relevant positive damping which counterbalan-

ces the unstable behaviour of shaft. On the other hand, since t
yi
(z

1
)+0 for i'1, the

damping e!ect of the mass vanishes on higher modes and the structure tends to gallop on
the second mode at uN

g2
.

(c) Also for c
0yy

'0, c
1yy

(0 the system can gallop if equation (30) holds; but the large
t
y1

(z
1
) together with a negative c

1yy
parameter gives rise to a negative damping largely

exceeding the positive e!ect due to the shaft. Thus, the structure tends to gallop in the "rst
mode at uN

g1
(uN

g2
.

(d) For c
0yy

(0, c
1yy

(0 equation (30) is implicitly satis"ed and galloping occurs, in the
"rst mode, at an even lower critical velocity.

5. GUST BUFFETING RESPONSE

Consider a stable system. Let e(t) be any structural scalar e!ect (a component of the
displacement, of the bending moment, of the shear force in a given direction; a local stress).
It is given by

e (t)"+
a

ra
+
i/1

/aipai (t), (32)

+a being the sum of two terms with indices a"x, y, respectively, /ai is the in#uence
coe$cient of e(t) associated with the modal shape tai . For e(t)"a (z ; t), /bi"tai (z)dab
(a,b"x, y) [equation (16)].

Due to structural linearity, e also is a stationary Gaussian random process, as are F
x
, F

y
.

The mean maximum and minimum values of e in the period ¹ over which wind velocity is
averaged are given by (Davenport 1964)

eN
.!9

"eN#g
e
p
e
, eN

.*/
"eN!g

e
p
e
, (33)

g
e
"J2 ln(K

e
l
e
¹ )#

0)5772

J2 ln(K
e
l
e
¹ )

, l
e
"

1

2n
p
eR

p
e

, (34)

p2
e
"P

=

0

S
e
(n) dn, p2

eR
"P

=

0

(2nn)2S
e
(n) dn, (35)

where eN is the mean value of e; p
e
, g

e
, l

e
, S

e
are respectively the r.m.s. value, the peak factor,

the expected frequency and the p.s.d.f. of e@, e@"e!eN being the #uctuation of e around eN ;
p
eR
is the r.m.s. value of eR ; K

e
"1 for eNO0, K

e
"2 for eN"0 (Piccardo & Solari 1998b). At the

"rst level,

eN"+
a

ra
+
i/1

/ai pN ai , S
e
(n)"+

a
+
b

ra
+
i/1

rb
+
j/1

/ai /bj S
paipbj

(n), (36)

pN ai being given by equation (17); S
paipbj

is the c.p.s.d.f. of the solutions p@ai (t), p@bj(t) of equations
(21) and (22).

The situation is easier at the second level. FM
y
"0 [equation (15a)] implies pN

yj
"0

[equation (17)]. Since p@ai (t), p@bj(t) are the solutions of the uncoupled equations (25),
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their c.p.s.d.f. is given by

S
paipbj

(n)"H*ai (n)H*bj (n) P
h

0
P

h

0

S
FaFb

(z, z@; n)tai (z)tbj(z@) dz dz@, (37)

Hai(n)"
1

(2nnai)2
1

1!(n/nai)2#2imai n/nai
, (38)

where S
FaFb

is the c.p.s.d.f. of F@a , F@b [equation (15b)]; Hai is the complex frequency response
function of the ith mode in plane az; H*ai is the conjugate of Hai ; i is imaginary unit. Since
F@
x
, F@

y
are proportional to u@

x
, u@

y
, respectively, and u@

x
, u@

y
are independent, then S

FaFb
"0 and

S
paipbj

"0 for aOb; furthermore, since poles and monotubular towers have natural frequen-
cies well separated in the same plane, S

paipaj
+0 for iOj (Elishako! 1983). Therefore,

S
e
(n)"+

a

ra
+
i/1

/2ai Spai
(n), p2

e
"+

a

ra
+
i/1

/2aip2
pai

, p2
eR
"+

a

ra
+
i/1

/2aip2
pR ai

, (39)

where p
pai

, p
pR ai

are the r.m.s. values of pai , pR ai .
The solution of the above equations calls for speci"c numerical approaches (Simiu &

Lozier 1979; Solari 1981; Response 1993). Computer program DAWROS (Solari 1981),
originally addressed to alongwind vibrations and now generalized to the gust-excited
crosswind response, takes also into account the horizontal cross-correlation of pressure on
masses of arbitrary shape. This makes the double line integral in equation (37) a quadruple
integral over an articulated surface domain.

It is well recognized that the gust-excited response mainly depends on the "rst mode and
that, at least for displacements, r

x
"r

y
"1 usually represents an excellent approximation

(Simiu & Scanlan 1996). In the present case, the potential unstable behaviour of higher
modes opens the question of how wide is the neighbourhood of the bifurcation threshold
where higher critical modes are signi"cant. The example at the end of this paper and other
applications not reported here demonstrate that galloping of higher modes is an &&explosive''
phenomenon of the critical mode in an almost vanishing neighbourhood of the bifurcation.
This justi"es studying the bu!eting of only the "rst mode, provided that analyses are limited
to the stable domain of the response.

6. GENERALIZED GUST FACTOR AND EQUIVALENT STATIC FORCE

Assume that the generalized displacement a"x, y depends only on the "rst modal shape
ta1(z) in plane az. Furthermore, let us de"ne the equivalent static force Fa%2 (z) as the force
that, applied statically in direction a, gives rise to the mean maximum displacement aN

.!9
(z).

Using the method proposed by Piccardo & Solari (1996, 1998b), aN
.!9

and Fa%2 are given by

aN
.!9

(z)"GaaN x (z), Fa%2(z)"GaF1 x (z) (40)

in which Ga is the generalized gust factor and aN x is the static displacement caused by the
application of FM

x
in the a direction. They are given by

Ga"
aN (z)
aN x (z)

#ga
pa(z)
aN x (z)

, (41)

aN x(z)"ta1(z)
obhuN 2(z

0
)ta1 (h)

2(2nna1)2
N
+
k/0

c
kxx

KM
ka , (42)

KM
0a"

:h
0
D2(z)c

xx
(z)ta1(z) dz

hta1 (h)
, KM

ka"
D2 (z

k
)A

k
ta1(z

k
)

bhta1(h)
, (k"1, 2,2, N), (43)
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where KM
ka (k"0, 1,2, N) are nondimensional nonnegative coe$cients, aN is the mean value

of a, pa , ga are the r.m.s. value and the peak factor of a@, a@"a!aN being the #uctuation of
a around aN ; these quantities are given by equations (34)} (36) when e (t)"a (z ; t), r

x
"r

y
"1,

/b1"ta1(z)dab . For a"x and aN x"xN equations (40) and (41) identify themselves with
original Davenport's formulae (1961). One has

aN (z)"aN x(z)dax , pa(z)"aN x (z)NaIa (z0) JB2a#R2a , paR (z)"aN x(z)NaIa (z0) (2nna1)Ra , (44)

ga"J2 ln(2la¹/Na)#
0)5772

J2 ln(2la¹/Na )
, la"na1S

R2a
B2a#R2a

, (45)

Ga"dax#NagaIa(z0)JB2a#R2a , (46)

where Ba , Ra are nondimensional coe$cients associated with the background or quasi-
static part and with the resonant part of the response,

B2a"
(+N

k/0
c
kaaK@

ka)2
(+N

k/0
c
kxx

KM ax)2 P
=

0

Ja (n) dn, R2a"
(+N

k/0
c
kaaK@

ka)2
(+N

k/0
c
kxx

KM ax)2
nna1
4ma1

Ja(na1), (47)

K@
0a"

:h
0
D (z)caa (z)ta1 (z) dz

hta1(h)
, K@

ka"
D (z

k
)A

k
ta1(z

k
)

bhta1(h)
, (k"1, 2,2, N), (48)

Ja (n)"
:h
0

:h
0

D (z)D (z@)Caa (z)Caa(z@) S*
uaua

(z, z@; n) ta1(z)ta1 (z@) dz dz@
[:h

0
D (z)Caa (z)ta1(z) dz]2

, (49)

where K@
ka (k"0, 1,2,N) are nondimensional nonnegative coe$cients; S*

uaua
(z, z@; n) is the

c.p.s.d.f. of u*a (z ; t), u*a (z@; t), u*a"u@a/pua
being the reduced turbulence. As is typical of #exible

structures, equation (45b) neglects the background part of the temporal derivative of the
response (Solari 1993b).

7. CLOSED-FORM SOLUTION

The closed-form solution of the gust bu!eting of poles and monotubular towers calls for the
explicit expression of KM

0a [equation (43a)], K@
0a [equation (48a)], KA

0a1 [equation (28a)], Ba ,
Ra [equation (47)]. Noteworthy formulae of KM

0a , K@
0a , KA

0a1 can be obtained for given
classes of caa and ta1 functions (Solari & Pagnini 1998). The derivation of Ba , Ra starts from
the substitution of equation (14) into equation (49):

Ja (n)"
+N

h/0
+N

k/0
c
haackaaXhka(n)

(+N
k/0

c
kaaK@

ka)2
, (50)

where X
00a , X

hka , X
0ka (h, k"1, 2,2,N) are spectral contributions related to the aerody-

namic actions over the shaft, to the aerodynamic cross-correlated actions over the hth and
kth masses, and to the aerodynamic cross-correlated actions over the shaft and the kth
mass, respectively,

X
00a(n)"

:h
0

:h
0

D (z)D (z@)caa (z)caa(z@) S*
uaua

(z, z@; n) ta1(z)ta1 (z@) dz dz@
h2t2a1(h)

, (51)

X
hka (n)"

D(z
h
)D (z

k
)A

h
A

k
S*
uaua

(z
h
, z

k
; n)ta1(z

h
)ta1(z

k
)

b2h2t2a1(h)
, (h, k"1, 2,2, N), (52)

X
0ka(n)"

D(z
k
)A

k
ta1(zk)

bh2t2a1 (h) P
h

0

D (z)caa (z) S*
uaua

(z, z
k
; n)ta1(z) dz, (k"1, 2,2,N), (53)
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The Equivalent Wind Spectrum Technique, EWST (Solari 1988) and the Generalized
Equivalent Spectrum Technique, GEST (Piccardo & Solari 1998a) schematize the actual
multivariate and multidimensional wind "eld [equations (4) and (5)] by equivalent pro-
cesses identically coherent over assigned spatial domains. Using GEST, equation (51)
becomes

X
00a (n)"K@2

0aS*
ua
(z

0
; n) CMk

0ag0zanN, (54)

where S*
ua

is the p.s.d.f. of u*a , and

CMsN"
1

s
!

1

2s2
(1!e~2s) for s'0, CM0N"1, (55)

k
0a"

1

2 C
1

(h#h
b
)ta1 (h) P

h

~hb

ta1(z) dzD
0>55

, g
0za"

c
zah

uN (z
0
)
, (56)

The application of EWST to equation (52) allows us to overcome the point model of
masses by also considering the cross-correlation of pressure over their surface. It follows
that

X
hka (n)"K@

haK@
kaJS*

ua
(z

h
; n)CMk

haghzanNCMk
hagh0anN

]JS*
ua
(z

k
; n)CMk

hagkzanN CMk
kagk0anN Coh

uaua
(z

h
, z

k
; n), (h, k"1, 2,2, N),

(57)

where

g
k0x

"

C
yx

b
k

uN (z
k
)

, g
k0y

"

C
xy

d
k

uN (z
k
)

, g
kza"

C
zahk

uN (z
k
)
, (k"1, 2,2, N), (58)

k
ka"0)4 (k"1, 2,2, N); Cab is the exponential decay coe$cient of u@b in direction a; d

k
, b

k
,

h
k
(k"1, 2,2,N) are the reference sizes of the kth mass parallel to x, y, z, respectively.
The development of equation (53) calls for the joint use of EWST, GEST and some

further numerical evaluations. This mixed approach leads to the relationship

X
0ka(n)+K@

0aK@
kaJS*

ua
(z

0
; n)CMk

0ag0zanN

]JS*
ua
(z

k
; n)CMk

kagkzanNCMk
kagk0anN Coh

uaua
(z

0
, z

k
; hn), (k"1, 2,2,N), (59)

where h is a nondimensional coe$cient in the range [0,1]. For h"0 (unit coherence) and
1 (actual coherence) equation (59) tends to overestimate and underestimate X

0ka , respective-
ly; h"0)5 (square root of the coherence) represents a suitable average choice.

Substituting equations (54), (57) and (59) into equation (50) and equation (50) into
equation (47b) provides

R2a"
1

(+N
k/0

c
kxx

KM
ka)2

N
+
h/0

N
+
k/0

c
haa ckaaK@

haK@
kaRhaRka Coh

uaua
(z

h
, z

k
; h

hk
na1), (60)

where h
h0
"h

0k
"0)5 for h, k'0; h

hk
"1 in all other cases. R

0a , Rka (k"1, 2,2, N) are the
parts of the resonant contribution Ra associated, respectively, with the shaft and the kth
mass:

R2
0a"

n
4ma1

j
x
nJ
0a

(1#1)5j
x
nJ
0a)5@3

CMnJ
0ahI 0aN, (61)

R2
ka"

n
4ma1

j
x
nJ
ka

(1#1)5j
x
nJ
ka)5@3

CMnJ
kahI kaN CMnJ

kawJ kaN, (k"1, 2,2,N), (62)
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where, putting h
0
"h,

hI
ka"

k
kajx

C
zahk

ja¸a(zk)
, nJ

ka"
na1ja¸a (zk)

j
x
uN (z

k
)

, (k"0, 1,
2

, N), (63)

wJ
kx
"

k
kx

C
yx

b
k

¸
x
(z

k
)

, wJ
ky
"

k
ky
j
x
C

xy
d
k

j
y
¸

y
(z

k
)

, (k"1, 2,
2

, N). (64)

The analytical evaluation of the background response may be obtained by substituting
equations (54), (57) and (59) into equation (50), and equation (50) into equation (47a), having
set Coh

uaua
(z, z@; n)"Coh

uaua
(z, z@; nam), where nam is an average frequency of the p.s.d.f. of

u@a assumed as representative of the harmonic content of the background part of the
response. Since nam@na1, Coh

uaua
(z, z@; nam)+1 applies. Generalizing equation (60) to B2a ,

equation (47a) may be approximated by the formula

B2a"
(+N

k/0
c
kaaK@

kaBka)2
(+N

k/0
c
kxx

KM
ka)2

, (65)

which provides reliable estimates especially for N"1. B
0a , Bka (k"1, 2,2,N) are the parts

of the background contribution Ba associated, respectively, with the shaft and the kth mass;
using the closed-form solutions developed by Solari (1982, 1993a, b) and Piccardo & Solari
(1998b, c),

B2
0a"

1

1#0)30hI 0>63
0a

, B2
ka"

1

1#0)334(hI
ka#wJ

ka)0>63
, (k"1, 2,2,N). (66)

Equations (60) and (65) point out the relative roles of the shaft and of the masses. With the
surface of the masses tending to zero, the structure tends to the classical slender cantilever
vertical beam. In the dual case in which there is one mass of dominant size on the remaining
surface, the point-like model is realized (Solari 1982). The closed formulae obtained by
Solari (1993a, b) and by Piccardo & Solari (1998b, c) can be regarded as particular cases of
the above solution.

Finally, it is important to stress the case in which not all coe$cients c
kyy

(k"0, 1,2,N)
have the same sign. If this involves a relevant response over the modes higher than the "rst,
the gust factor technique cannot be applied and a numerical approach (Section 5) has to be
used.

8. COMBINATION RULES

The closed-form solution allows one to determine pN a1, ppa1
, p

pR a1
by dividing aN , pa , paR [equa-

tion (44)] by ta1 . The further use of the second level approach provides the mean maximum
and minimum values of a generic scalar e!ect e(t) [equations (33)} (35)], assuming p

x1
,

p
y1

as independent. Even though theory proves this assumption, experience has shown
many cases in which alongwind and crosswind responses are partially correlated (Ballio
& Solari 1992; Holmes et al. 1992). The combination rule proposed by Solari et al. (1998)
takes this fact into account, becoming very expressive if jointly applied together with the
gust factor technique.

Let x(t) be a vectorial e!ect (a displacement, a bending moment or a shear force) given by

x(t)"iu
x
(t)#ju

y
(t), (67)

where ua is the component of x due to the a response (a"x, y); since yN "0, also uN
y
"0. Let

uN a.!9
be the mean maximum value of ua ; uN .!9

is the mean maximum value of the Euclidean
norm u of x. The probability that u exceeds uN

.!9
is de"ned as small.
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If u
x
, u

y
are noncorrelated processes, the probability that u crosses the eliptical

threshold in Figure 10 is small, and uN
.!9

+maxMuN
x.!9

, uN
y.!9

N. In the dual case in which u
x
,

u
y
are perfectly positively or negatively correlated, u lies, with small probability of going

outside, on the BD or AC diagonals of the rectangle ABCD, and uN 2
.!9

+uN 2
x.!9

#uN 2
y.!9

.
De"ning the probability that u exceeds the polygonal threshold P

1
, P

2
, 2, P

12
as small,

uN
.!9

is the length of the vector joining the origin of plane u
x
, u

y
with the most distant point

of the polygon;

uN
.!9

"maxMu
1
, u

2
, 2, u

12
N, (68)

u
l
"J[uN x

x
(1!a

xl
#a

xl
G

x
)]2#[uN x

y
a
yl
G

y
]2, (l"1, 2,

2
, 12), (69)

where uN xa is the ua value caused by the application of FM
x

in direction a ; aal are nondimen-
sional coe$cients listed in Table 1 where g"0)3, c"0)8 [Figure 10; Solari et al. (1998)].

The 12 combination rules de"ned by equation (69) correspond to the application of the
following 12 loading conditions:

F
x%2,l

(z)"(1!a
xl
#a

xl
G

x
)FM

x
(z)XF

y%2,l
(z)"a

yl
G

y
FM
x
(z), (l"1, 2, 2, 12) (70)

in which X is the union symbol (simultaneous application).
Consider the scalar e!ect e(t) already studied in Section 4 and assume

e(t)"i
x
u

x
(t)#i

y
u

y
(t), (71)

where i
x
, i

y
are in#uence coe$cients. Due to equations (68)} (70), equation (33) becomes

eN
.!9

"maxMe
1
, e

2
, 2, e

12
N, eN

.*/
"minMe

1
, e

2
, 2, e

12
N, (72)

e
l
"i

x
uN x

x
(1!a

xl
#a

xl
G

x
)#i

y
uN x

y
a
yl
G

y
, (l"1, 2, 2, 12). (73)
Figure 10. Combination rule for vectorial e!ects.
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In contrast to equation (33), equations (72) and (73) involve only analytical evaluations
and, moreover, minimize the risk of underestimating the e!ect.

9. FULL-SCALE MEASUREMENTS

The procedure described in the foregoing highlights the central role of the structural
damping especially in proximity to galloping instability. An analogous role of the structural
damping is apparently close to the resonant shedding conditions (Solari & Pagnini 1998).
Faced by the necessity of correctly evaluating this quantity, the literature has little reliable
data. Eurocode 1, for instance, gives semi-empirical values of the structural damping of
generic steel elements. Speci"c studies on poles and monotubular towers (Yam et al. 1997)
are almost totally lacking.

In order to overcome this limitation, full-scale experiments were carried out by Pagnini
et al. (1999) on "ve sample structures. Free damped vibrations were induced by pulling and
releasing a cable. The cable was pulled by jacks. The release was obtained by interposing
steel test pieces or nylon wires between the shaft and the cable (Figure 11). The section of the
test pieces and the number of wires were chosen to break in correspondence with preor-
dained displacements. The tests were repeated for each sample structure, varying both the
position of the cable and the imposed displacement.
Figure 11. Apparatus for releasing the cable.

TABLE 1

Parameters a
xl

, a
yl

for l"1, 2, 2, 12

l 1 2 3 4 5 6 7 8 9 10 11 12

a
xl

g c 1 1 c g !g !c !1 !1 !c !g
a
yl

1 c g !g !c !1 !1 !c !g g c 1
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Structures were monitored by accelerometers (Figure 12). Displacements were obtained
by integrating the accelerations, using suitable harmonic "lters to circumscribe the oscilla-
tions decaying in selected modes. Structural damping coe$cients were derived by consider-
ing temporal segments of the displacement with di!erent values of the motion amplitude.

Some further results were available from previous full-scale experiments carried out by
Solari (1992) on an urban light pole excited by a vibrodyne.

Figure 13 summarizes the main results of the experiments (Pagnini et al. 1999), showing
the "rst structural damping coe$cient as a function of top displacement. Although the
structural sample is not su$cient to allow statistical evaluations, it is apparent that
damping increases while increasing the motion amplitude, according to laws depending on
the type of structure. Eurocode gives damping values on the safe side.

10. NUMERICAL APPLICATION

To show and discuss some typical results of the calculation method, let us examine the
urban light pole previously subjected to full-scale experiments by Solari (1992) and analyzed
by Solari & Pagnini (1998). The shaft has an octagonal conical shape and is made of steel
sheeting with constant thickness. There is one light equipment at the summit (N"1).
Table 2 summarizes the main geometric and structural properties.

Figure 14(a}e) shows a schematic of the pole, the thickness s, the diameter / of
circumscribed circumference, the area A and the moment of inertia J of the cross-section of
Figure 12. Accelerometer at the top of the shaft.



Figure 13. First structural damping coe$cient versus motion amplitude.

TABLE 2

Geometric and structural properties

Shaft Steel-sheeting thickness s"4 mm
Height above ground h"14 m

Depth of foundation extrados h
b
"0

Outer base diameter /
b
"280 mm

Outer top diameter /
1
"80 mm

Equipment Mass M
1
"145 kg

Height of barycentre z
1
"14)9 m
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the shaft. Figure 14 (f}h) shows the modes tai (a"x, y); tai (z
1
)"tai (h)#(z

1
!h) t@ai (h),

where t@ai is the "rst derivative of tai with respect to z. Table 3 lists the natural frequencies
nai , tai (h) and tai (z

1
).

The structure stands in homogeneous terrain with z
r
"0)1 and z

m
"5 m. Table 4 sum-

marizes the properties of atmospheric turbulence. The shear velocity u
*

varies between
0 and 4 m/s.

Table 5 provides the main aerodynamic properties of shaft and equipment. The drag
coe$cient of the shaft depends on Reynolds number Re"/uN /l, where l"15]10~6 m2/s
is the kinematic viscosity of the air; for 2)4]1054Re43]105, c

0d
is obtained through

logarithmic interpolation. The drag coe$cient of the mass is independent of Reynolds
number. On varying the wind direction c

0yy
"(c

0d
#c@

0l
) takes on values between !1 and

1 while c
1yy

"(c
1d
#c@

1l
) is between !0)3 and 0)3. There are consequently four possible



Figure 14. (a) Schematic diagram of the sample structure; (b) sheet thickness; (c) outer diameter; (d) cross-sectional
area; (e) moment of inertia; (f}h) "rst three modes.

TABLE 3

Natural frequencies and mode shape values (a"x, y)

Mode i nai (Hz) tai (h) tai (z
1
)

1 0)549 0)0676 0)0784
2 3)597 0)0216 !0)0230
3 10)287 0)0650 !0)0115

TABLE 4

Atmospheric turbulence properties

Turbulence intensities I
x
(z)"1/ln(z/z

r
)

I
y
(z)"0)78 I

x
(z)

Integral length scales ¸
x
(z)"300 (z/300)0>29 (¸

x
, z in m)

¸
y
(z)"0)25 ¸

x
(z)

Exponential decay coe$cients C
yx
"C

zx
"11)5 C

zy
"7

C
xy
"0 (on the safe side)
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aerodynamic con"gurations denoted by A,B,C,D as summarized in Table 6. Coherently
with the second level approach, c

0xy
"c

0yx
"c

1xy
"c

1yx
"0.

Assuming conventionally that the structural damping is m
sai "0)004775 (2nm

sai"0)03)
for all modes (Solari & Pagnini 1998), Figures 15 and 16 show the diagrams of m

xi
and

m
yi

[equation (26)] in terms of u
*
. By the virtue of the mass at the top, the "rst alongwind

aerodynamic damping (Figure 15) largely exceeds the structural part in the design wind



TABLE 5

Main aerodynamic properties

Shaft Reference height z
0
"0)6h"8)4 m

Reference size b"/ (z
0
)"0)16 m

Drag coe$cient c
0d
"1)334 for Re42)4]105

c
0d
"1)196 for Re53]105

Mass Reference height h
1
"1)80 m

Reference size b
1
"1)85 m

Reference area A
1
"b

1
h
1
"3)33 m2

Drag coe$cient c
1d
"0)3

TABLE 6

Basic aerodynamic con"gurations

Case c
oyy

c
1yy

A 1 0)3
B !1 0)3
C 1 !0)3
D !1 !0)3

Figure 15. Damping coe$cient in the alongwind direction.
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velocity range. The crosswind aerodynamic damping (Figure 16) follows the tendency
discussed in Section 4. In case A, m

yi
is positive and the response is always asymptotically

stable. In case B, the galloping of the second mode is realized when u
*
"3)606 m/s (shaded

domain). In case C, the galloping involves the second mode at u
*
"0)843 m/s. Case D,

somewhat improbable, gives rise to the galloping of the "rst mode for u
*
"0)586 m/s.

Figure 17 shows the diagrams of the generalized gust factor Ga (a"x, y). Solid lines
correspond to the solution provided by DAWROS (Solari 1981), taking the "rst three



Figure 16. Damping coe$cient in the crosswind direction.
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modes into account. Dotted lines refer to the solution given by DAWROS using solely the
"rst mode. Dashed lines are related to the gust factor technique applied side by side with the
closed-form solution.

DAWROS analyses based on the "rst mode o!er perfect results (solid lines coincide with
dotted lines), with the sole exception of the case in which galloping occurs on the second
mode (Figure 17b); nevertheless, taking the "rst two modes into account has no in#uence on
the bifurcation threshold being evaluated correctly. The closed-form solution gives results
of increasing precision with increasing u

*
. However, due to the hypothesis of near neutral

atmospheric conditions, better approximations in the low wind velocity range should be
purely illusory.

Figures 18 and 19 show some p.s.d.f.s of the displacement at the top of the shaft close to
bifurcation states. Figure 18 corresponds to case B with u

*
"3)2, 3)6 m/s. Figure 19 refers to

case C with u
*
"0)4, 0)8 m/s. The ordinate nSa(h; n)/xN 2 (h) highlights the increase of the

resonant peaks of the crosswind response (the second peak in case B, the "rst peak in case
C). Near the bifurcation they overtake the resonant peaks of the alongwind displacement
tending to the in"nite when, annulling the total damping, galloping occurs.

Figure 20(a) shows the diagrams of the displacement s
1
, s

2
, s

3
[equation (73)] at the top of

the shaft for case A. Since alongwind response always prevails over crosswind response, the



Figure 17. Gust factor for the aerodynamic con"gurations (a) A; (b) B; (c) C; (d) D in Table 3.

Figure 18. P.s.d.f. of the displacement at the top of the shaft for case B: (a) u
*
"3)2 m/s; (b) u

*
"3)6 m/s.
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Figure 19. P.s.d.f. of the displacement at the top of the shaft for case C: (a) u
*
"0)4 m/s; (b) u

*
"0)8 m/s.

Figure 20. Maximum displacement at the top of the shaft: (a) case A; (b) all cases compared.
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maximum value of the displacement is sN
.!9

"s
3

[equation (72)]. In cases B, C, D (Figure
20b), close to bifurcation, the crosswind response exceeds the alongwind response and
sN
.!9

suddenly passes from s
3

to s
1

(Figure 10). Stresses exhibit analogous properties (Solari
& Pagnini 1998).

The knowledge of the actual structural damping points out the role of a suitable
evaluation of this parameter. Figure 21 shows the diagrams of the generalized gust factors
associated with the aerodynamic con"gurations previously studied. Dashed lines, derived
from Figure 17, correspond to the conventional choice m

sai"0)004775; solid lines involve
the more realistic estimate m

sai"0)01 (Figure 13); analyses have been carried out in closed
form. The bifurcation threshold increases proportionally to structural damping, thus
providing a further safety margin especially in correspondence to large energy dissipations.
Far from this limit, in the stable regimes, structural damping is dominated by aerodynamic
damping and its importance is almost negligible.



Figure 21. Gust factors for m
sai"0)004775 (dashed lines) and m

sai"0)01 (solid lines): (a) case A; (b) case B; (c) case
C; (d) case D.
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11. CONCLUSIONS AND PERSPECTIVES

The wind-excited response of poles and monotubular towers represents quite a peculiar
problem: on the one hand, it stands at the centre of growing engineering and technological
interest; on the other, it allows rather re"ned analyses consistent with physical reality for
this type of structure. The activities coordinated by ACS ACAI Servizi have combined these
two aspects, producing an articulated range of studies spreading from experimental and
theoretical research to pre-normative, design and production analyses. In this frame of
reference, this paper illustrates the formulation of a calculation procedure of the gust
bu!eting response and galloping instability.

It is shown that a general set-up of this subject, here de"ned as the "rst level, leads to
analytical developments of extreme complexity both for the bifurcation study of dynamic
equilibrium and for the stable response. It su$ces to turn to some simple and reasonable
approximations, referred to as the second level, for the method to take on such simpli"ed
characteristics to allow a solution in closed form. As required by the producers and the desig-
ners, this solution is formally analogous to the methods proposed by present codes of practice.

The study points out the central role of structural and aerodynamic damping. Struc-
tural damping increases on increasing the motion amplitude, according to laws strictly
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depending on the type of structure. Aerodynamic damping is a consequence of aeroelastic-
ity. In the presence of aerodynamically stable shapes, the alongwind response dominates the
crosswind response and the masses, above all that at the top, behave as dampers. The
presence of aerodynamically unstable shapes, both of the shaft and of the masses, can cause
manifold phenomena of potential galloping involving either the "rst or the second mode. In
any case the masses play a major role since, depending on their shape, they either mitigate
or exacerbate the oscillations.

Several problems deserving further study come out of this framework. The method so far
developed applies the quasi-steady theory taking the longitudinal and lateral turbulence
into account. Wind-structure interaction is simulated considering only the alongwind and
crosswind displacements. As a matter of fact, due to the large shaft #exibility, the rotations
of the local masses in the alongwind and crosswind planes should not be ignored. In this
same context, neither vertical turbulence nor moments around the x- and y-axis should be
neglected. To overcome these limits the authors are developing a generalized quasi-steady
theory for point-like elements (the localized masses) to determine the full aerodynamic
forces and aeroelastic properties of steel poles and monotubular towers. It is expected that
this formulation may furnish nonclassical aerodynamic actions and damping e!ects leading
to complex galloping conditions. Parallel to this mathematical approach the authors are
also planning to carry out wind tunnel tests to determine reliable aerodynamic coe$cients
including 3-D angular derivatives.

The second aspect which is worth of deeper study concerns the nonlinear behaviour from
the mechanical, geometric and aeroelastic viewpoint. Mechanical damping increases with
motion amplitude; this means that once the structure takes on a deformation branch
leading to bifurcation, the structural motion could be self-limiting because of dissipated
energy; it follows that galloping should move towards higher velocities. Such a study requires
substantial evolution of both the damping and the response models. From the geometric
viewpoint the mass at the summit, paired to large deformation states, brings about second-
order e!ects whose extent must still be investigated. These e!ects being important, the
expansion of the aeroelastic contributions beyond the linear terms is required.

To develop the theory further, the necessity arises to carry out further full-scale tests to
validate or calibrate the reliability of models. The authors are about to monitor some poles
and monotubular towers to acquire new essential information.
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